Dynamic Network Models for Forecasting

Reference: Dagum, P.; Galper, A.; & Horvitz, E. J. Dynamic Network Models for Forecasting. Stanford, CA, 1992.

Abstract: We have developed a probabilistic forecasting methodology through a synthesis of belief-network models and classical time-series analysis. We present the dynamic network model (DNM) and describe methods for constructing, refining, and performing inference with this represetnation of temporal probabilistic knowledge. The DNM representation extends static belief-network models to more general dynamic forecasting models by integrating and iteratively refining contemporaneous and time-lagged dependencies. We discuss key concepts in terms of a model for forecasting U.S. car sales in Japan.

Jump to... [KSL] [SMI] [Reports by Author] [Reports by KSL Number] [Reports by Year]
Send mail to: ksl-info@ksl.stanford.edu to send a message to the maintainer of the KSL Reports.