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Abstract

Web applications must deal with a rapidly evolving, distributed, het-
erogeneous environment of information and reasoning services. Many ap-
plications obtain information from multiple sources and thus need to de-
termine how, why, and when to use answers. Currently few if any web-
based reasoning services make explanations available and, if they do, the
supporting proofs of these explanations are rarely portable across appli-
cations. Thus, proofs, if available, are difficult to understand and more
difficult to combine. This paper describes the properties of Inference Web
(IW) portable proof fragments. These proof fragments can be combined
and thus can be used to specify distributed proofs for web-based reasoning
tasks. Moreover, the proof fragment can be used for merging proofs gen-
erated by distinct applications. We introduce the portable proof fragment
specification used to enable Inference Web applications by example. Our
examples are chosen from real world configuration-driven examples.

1 Introduction

Explanations are expected, required results when performing automated rea-
soning tasks [1, 3, 14, 8]. In a centralized environment such as a computer,
the dumping of some kind of proof is a standard feature of most inference
engines these days. In a distributed and heterogeneous environment such as
the web, however, explanations are unavailable since their supporting proofs
need to be distributed, sharable, portable and combinable simultaneously. Proofs
are distributed if proof fragments can be stored in distinct websites. Proofs
are sharable if they can be represented in a notation with a semantic precise
enough to make them machine understandable. Proofs are portable if they can
be independent of both the inference engines and inference engine environments
where they are generated. Proofs are combinable if they can be merged through
their common elements such as formulas (it is desirable that original proofs can
be identified in combined proofs).



Proofs for the web may need to be distributed since reasoners can be em-
bedded in web services that are inherently distributed. Proofs for the web may
need to be sharable since distinct services may be based on different reasoners
(or single services may be based on many reasoners). Proofs for the web may
need to be portable since inference engines may be unavailable at the time ex-
planations are required. Proofs for the web may also need to be combinable if
single explanations are expected for both single services or combined services.
Thus, the lack of a specification of proofs that can be distributed, sharable,
portable and combinable poses challenges for explaining web-based automated
reasoning.

The Inference Web (IW) is an implemented, distributed explanation solution
composed of specialized data and tools for generating, browsing, maintaining,
annotating, and combining proofs used for explaining reasoning and retrieval
tasks performed in the web [10]. This paper describes the properties of IW
proof fragments that can be used by distinct agents to build and/or combine
distributed, portable proofs. We present sharable proof fragments represented
in W3C’s DAML+OIL [4].

The rest of this paper is organized as follows. Section 2 presents an example
pedagogical query. Section 3 shows how an IW proof can explain an answer
for a deductive query. The section also explains why IW proofs are inherently
distributed and portable. Section 4 describes related work and Section 5 presents
some conclusions and future work.

2 A Proof Example

Any web application that queries a knowledge bases (or data bases) is a potential
user of Inference Web proofs. In this paper we use the Wine Agent1 application
to introduce the IW proof.

The wine agent is a web application that provides information about wines
such as suggested wine and food pairings, descriptions of wines that match
course descriptions, wine availability on selected wine web sites, etc. A user
interacting with the wine agent is presented with an interface that allows them
to choose either a particular food (such as oysters) or a description of a type
of meal course (such as shellfish or pasta with spicy red sauce). The program
then forms a syntactically correct query and submits it to a reasoner (in this
case Stanford’s JTP [6]. The wine agent then uses the wines ontology2 with
JTP to return a description of the wine that matches the meal as well as any
individual wines that match that are in the knowledge base. It also provides
the user with the option of finding the particular wines on a wine web site and
provides the option of using the description of the wine as a query to the web
site to provide other individual wine options. Since the reasoner used in this
example can generate IW proofs, the wine agent uses these proofs in order to
provide at least one explanation for any answer produced. IW proofs can also be

1http://ksl.stanford.edu/people/dlm/webont/wineAgent/
2http://ontolingua.stanford.edu/doc/chimaera/ontologies/wines.daml



used to support explanations for queries for which no answer was returned when
working with reasoners capable of dumping proofs for why a query was over-
constrained (incoherent) because of the existence of counter-examples or proofs
of the negation of the query. We will limit this paper to the discussion of positive
explanations however and leave “why-not” and counter-example explanations
for a future paper.

As an example, lets say that the user choose a spicy red meat course and then
is interested in knowing why the suggested wine description includes the notion
of a full bodied wine. As presented in Figure 1, an explanation in the terms
of the wine ontology is that DRINK-HAS-FULL-BODY-RESTRICTION as a
result of the application of modus ponens on the user stated assumption that the
NEW-COURSE is of type SPICY-RED-MEAT and the ontology statement that
SPICY-RED-MEAT-COURSEs should be paired with wines that are members
of the class DRINK-HAS-FULL-BODY-RESTRICTION.

Figure 1: Browsing an IW proof.

An IW proof fragment supporting the explanation above is presented in Fig-
ure 2. In contrast with typical proofs that are normally monolithic documents
containing cumbersome descriptions of proof steps and formulas, IW proofs
are combinations of proof fragments as illustrated by the example in Figure 2.
IW proofs are inherently distributed since each proof fragment can be accessed
through its URI. As a consequence, the physical location of each proof frag-
ment (and even whether the proof fragment is static or dynamic) is irrelevant
for presenting explanations assuming web availability. The proof is machine



understandable since it is based on terms of the Inference Web Ontology3 that
is written in DAML+OIL [4].

1 <?xml vers ion =’1.0’?>

2 <rdf :RDF
3 xmlns : rd f s =’ http ://www. w3. org /2000/01/ rdf−schema#’
4 xmlns : iw=’ http ://www. ks l . s tan ford . edu/ so f tware /IW/spec / iw . daml#’
5 xmlns : rdf =’ http ://www. w3. org /1999/02/22− rdf−syntax−ns#’
6 xmlns : daml=’ http ://www. daml . org /2001/03/ daml+o i l #’>
7 ( . . . )
8 <iw : APFS>
9 <iw : hasFormula>

10 <iw : KIF>(type NEW−COURSE FULL−BODY−RESTRICTION)</iw : KIF>

11 </iw : hasFormula>

12 <iw : isConsequentOf rdf : parseType =’daml : c o l l e c t i o n ’>
13 <iw : In f e renceStep >

14 <iw : hasIn f e renceRule>

15 <iw : In f e renceRule
16 rdf : about = ’ ( . . . ) / IW/ r eg i s t r y /IR/MP. daml’/>

17 </iw : hasIn f e renceRule>

18 <iw : hasIn f e renceEngine rdf : parseType =’daml : c o l l e c t i o n ’>
19 <iw : In f e renceEngine
20 rdf : about = ’ ( . . . ) / IW/ r eg i s t r y /IE/JTP. daml’/>

21 </iw : hasIn f e renceEngine>

22 <iw : hasAntecedent rdf : parseType =’daml : c o l l e c t i o n ’>
23 <iw : APFS rdf : about =’ . . / IW/ sample /IW8. daml ’/>

24 <iw : APFS rdf : about =’ . . / IW/ sample /IW9. daml’/>

25 </iw : hasAntecedent >

26 </iw : In f e renceStep >

27 </iw : isConsequentOf >

28 </iw : APFS>
29 </rdf :RDF>

Figure 2: An IW proof fragment.

3 Inference Web Proof Specification

In order to provide a logical foundation for our approach, we present IW from
a proof theoretic perspective.

3.1 Proof Fragments

We begin with some standard terminology used as building blocks for IW proofs
and proof fragments. A formula in the IW is a first-order statement written in
Knowledge Interchange Format (KIF) [7]. A formula labeling a position in a
structure (e.g., tree, sequent, etc.) is a formula occurrence.

Using standard terminology taken directly from Troelstra and Schwichten-
berg [16], “trees are partially ordered sets (X,≤) with a lowest element and all
sets {y : y ≤ x} for x ∈ X linearly ordered. The elements of X are called the
nodes of the tree; branches are maximal linearly ordered subsets of X.” A single
node at the bottom of the tree is specified as the root of the tree. If a branch

3http://www.ksl.stanford.edu/software/IW/spec/iw.daml



is finite, it ends in a leaf. Deduction trees are finite trees with all nodes labeled
by formulas.

A n-premise rule R is a set of formulas {S0, · · · , Sn, S} of cardinality n + 1.
An instantiation of R is said to be an inference step. Within the inference step,
S is the conclusion, and Si are the premises. An axiom is a zero-premise rule.
Instances of axioms appear in deduction trees as labels of leaf nodes. Axioms
may be statements from an ontology or assumptions posed by a user or premises
posed by a query language such as DQL [6].

An atomic proof fragment (APF) is a node of a deduction tree labeled by one
inference step in addition to the labeling formula. Labeling formulas are formula
occurrences. Conceptually one can think of an APF as a single application of
a rule used to deduce a single formula. An atomic proof fragment set is a
set of one or more APFs where all the APFs are labeled by a single formula.
Conceptually one can think of an APFS as a set of applications of inference
rules used to deduce the identical formula in a single step. APFSs are a critical
building block of the Inference Web since they are the key to combination and
multiple explanations Figure 2 presents an example of an APFS used on the
query example in Section 2. There, the labeling formula is stored under the
<iw:hasFormula> property of APFSs, as presented in line 10. Moreover, the
IW <iw:isConsequentOf> property identifies the inference steps of the APFSs.
For example, for the APFS in Figure 2, the text starting at line 13 and finishing
at line 26 specifies an inference step (and this is the only inference step in the
APFS).

An inference step is an instance of the rule referred to as the <iw:Inference-
Rule> element attached to its <iw:hasInferenceRule> property. The conclu-
sion of an inference step is the formula labeling the APFS owning the inference
step. The conclusion of the inference step in Figure 2 is the formula in line 10.
The premises of an inference step are the formulas labeling APFS associated
to the inference step through its <iw:hasAntecedent> property. The premises
of the inference step in Figure 2 are the formulas labeling the IW8.daml and
IW9.daml APFSs in lines 23 and 24, respectively. If the labeling formula of one
APFS is a premise of an inference step of another APFS then these two APFSs
are said to be consecutive APFSs.

Using the Inference Web terminology, a formal system with local rules, or a
LR-system, is specified by a finite set of rules [16].

3.2 Rules and the IW Registry

A description of rules in terms of their formulas is required for identifying the
LR-system of a deduction tree. One could potentially specify the set of rules of a
new LR-system T by using a well known set of inference rules identified say as a
Gentzen System LK. Thus, standard literature could be used to access the rules
and their associated formulas for very well known systems. We could specify
another LR-system W by the set of rules supported by a particular inference
engine (e.g., JTP [6]). However, this may not suffice for identifying the set
of formulas associated with each rule of W since a declarative specification of



the inference rules, including their formulas, can not be retrieved. For example,
line 16 of Figure 2 includes the name of an inference rule but does not include its
description. Moreover, while inference engines can create detailed proofs, they
rarely can inspect themselves in order to access the set of formulas associated
with the rules they implement.

The IW Registry4 is a repository of proof metadata enriching IW proofs,
as explained in [10]. Each entry in the Registry has its own URI. Entries are
machine understandable since they are based on terms publicly defined in the
Inference Web and DAML+OIL ontologies. Thus, using the registry developers
of inference engines can provide declarative descriptions of rules that are avail-
able on the web. For example, Figure 3 presents the entry for the modus ponens
rule used in the APFS described in Section 3.1 (see line 16 of Figure 2). In Fig-
ure 3, the set of formulas {(<= ?A ?B),(holds ?B),(holds ?A)} of MP are defined
KIF formulas in the rule specification. The conclusion (holds ?A) is attached
to the <iw:Conclusion> property of rules in line 12. The premises (<= ?A ?B)

and (holds ?B) are attached to the <iw:Premises> property of rules starting in
line 14.

1 <rdf :RDF
2 xmlns : rd f s =’ http ://www. w3. org /2000/01/ rdf−schema#’
3 xmlns : iw=’ http ://www. ks l . s tan ford . edu/ so f tware /IW/spec / iw . daml#’
4 xmlns : daml=’ http ://www. daml . org /2001/03/ daml+o i l #’
5 xmlns : rdf =’ http ://www. w3. org /1999/02/22− rdf−syntax−ns#’>
6 ( . . . )
7 <iw : In f e renceRule
8 iw :URL=’’>
9 <iw : Name>Modus Ponens</iw : Name>

10 ( . . . )
11 <iw : Conclusion >

12 <iw : KIF>(holds ?A)</iw : KIF>

13 </iw : Conclusion >

14 <iw : Premises rdf : parseType =’daml : c o l l e c t i o n ’>
15 <iw : KIF>(<= ?A ?B)</iw : KIF>

16 <iw : KIF>(holds ?B)</iw : KIF>

17 </iw : Premises>

18 <iw : In f e renceRuleSource rdf : parseType =’daml : c o l l e c t i o n ’>
19 <iw : Source
20 rdf : about = ’ ( . . . ) / IW/ r eg i s t r y /SRC/RUSSELLNORVIG1995. daml’/>

21 </iw : In f e renceRuleSource>

22 </iw : In f e renceRule>

23 </rdf :RDF>

Figure 3: IW Registry entry for the MP rule.

Following the terminology of Troelstra and Schwichtenberg [16], if T is a LR-
system, the rules specifying the system are called primitive rules of the system.
A rule R is said to be a derivable rule in T, if for each instance S0, · · · , Sn, S

there is a deduction of S from the Si by means of the rules of T. That is to
say, in this deduction the Si are treated as additional axioms. The Inference
Web supports this definition and use of primitive and derivable rules. Derivable
rules are defined from APFSs previously generated using primitive rules defined

4http://www.ksl.stanford.edu/software/IW/registry



in the IW Registry and other derivable rules. APFSs of derivable rules are
incorporated in the IW Registry.

3.3 Inference Engine Rules

In the IW architecture, the Registry is responsible for storing documentation of
rules as well as declarative definitions of sets of rules implemented by inference
engines. Thus, the trivial identification of the inference engine generating an
inference step γ suffices for specifying the LR-system associated with γ. For ex-
ample, Figure 4 presents the Registry entry for JTP. There, the <iw:Inference-
EngineRule> property of inference engines starting in line 14 and finishing in
line 20 identifies the set of rules implemented by JTP. For instance, in line 18
we can see a reference to the modus ponens rule discussed in Section 3.2. The
APFS in Figure 2 is from the LR-system specified by JTP since its only inference
step is associated with JTP (see line 20 in Figure 2).

1 <rdf :RDF
2 xmlns : rd f s =’ http ://www. w3. org /2000/01/ rdf−schema#’
3 xmlns : iw=’ http ://www. ks l . s tan ford . edu/ so f tware /IW/spec / iw . daml#’
4 xmlns : daml=’ http ://www. daml . org /2001/03/ daml+o i l #’
5 xmlns : rdf =’ http ://www. w3. org /1999/02/22− rdf−syntax−ns#’>
6 ( . . . )
7 <iw : In f e renceEngine>

8 <iw : Name>Java Theorem Prover</iw : Name>
9 <iw :URL>http ://www. ks l . s tan ford . edu/ so f tware /JTP/</iw :URL>

10 ( . . . )
11 <iw : In f e renceEngineSource rdf : parseType =’daml : c o l l e c t i o n ’>
12 <iw : Source rdf : about = ’ ( . . . ) / IW/ r eg i s t r y /SRC/JTP−TEAM. daml’/>

13 </iw : In f e renceEngineSource >

14 <iw : In f e renceEngineRule rdf : parseType =’daml : c o l l e c t i o n ’>
15 <iw : In f e renceRule rdf : about = ’ ( . . . ) / IW/ r eg i s t r y /IR/Demod. daml’/>

16 <iw : In f e renceRule rdf : about = ’ ( . . . ) / IW/ r eg i s t r y /IR/Enum. daml’/>

17 <iw : In f e renceRule rdf : about = ’ ( . . . ) / IW/ r eg i s t r y /IR/Func . daml ’/>

18 <iw : In f e renceRule rdf : about = ’ ( . . . ) / IW/ r eg i s t r y /IR/MP. daml’/>

19 ( . . . )
20 </iw : In f e renceEngineRule>

21 </iw : In f e renceEngine>

22 </rdf :RDF>

Figure 4: IW Registry entry for JTP.

The registration of the rules of inference engines has demonstrated to be a
useful resource for dealing with proofs with multiple LR-systems (e.g., proofs
produced by heterogeneous web agents). For instance, during the generation of
proofs, inference engines can use the Registry as a background ontology of rule
descriptions. Thus, they can simply dump a rule name and users can obtain
comprehensive rule definitions from the registry. Additionally inference engines
can use the Registry to identify undocumented rules. Proof verifiers can also
use the registry to retrieve rule formula specifications. Web tools can produce
rich explanations by linking their proofs to entries in the Registry.



4 Related and Future Work

Our work on the inference web extends and expands on work explaining descrip-
tion logics initiated by McGuinness [8, 9] and expanded to include explanation
of tableaux reasoners [2, 1]. It utilizes the notions of a proof theoretic approach
for providing an extensible proof fragment-based foundation for delivering cus-
tomizable explanations. This work focuses on the new demands of explanation
imposed by a web-based deployment of heterogeneous applications potentially
using many reasoners and many data sources. It also focuses on the needs
gathered from a number of government-sponsored intelligent systems programs
such as the DARPA High Performance Knowledge Base program5, the DARPA
Agent Markup Language Program6, and the DARPA Rapid Knowledge Forma-
tion Program7. We have gathered requirements from contractors in all programs
and also presented Inference Web portable proof specifications for comments.
Our initial choice of reasoners for incorporation was driven by the representation
and reasoning needs of these programs and more recently also from the needs of
the ARDA Novel Intelligence for Massive Data8 and ARDA Advanced Question
and Answering for Intelligence Programs9.

The Inference Web also looks to research in other areas to gather both re-
quirements and leverage. We draw some motivation from explanation in auto-
mated theorem provers such as [5] where they attempt to provide justifications
that are more readable than simple proof traces. We also look to the expert
systems explanation community for requirements and strategies including the
seminal work in systems such as MYCIN [15] to work moving to explanations of
design rationale [12]. Lessons learned early in this community that we leverage
were that acceptance of reasoning systems is critically dependent upon explana-
tions and deduction traces are inadequate. Our work differs from this and other
explanation systems from these communities in its emphasis on distribution,
combination, and fragmentation with follow-up question generation.

We believe that our portable proof specification is adequate for the reasoning
needs identified in the programs above thus we expect only minor extensions
to the proof specification. We do expect additions to the ontology of entries
in the IW Registry in order to incorporate more expressive representation of
information provenance. We also expect significant expansion of the inference
engines and inference rule portions of the registry. Other extensions include a
proof checker and specialized support for contradiction explanation and follow-
up questions. In the future, we may also consider the use of a meta-language
such as the one in Isabelle [13] for building formulas in logics other than first
order logic.

5http://reliant.teknowledge.com/HPKB/
6http://www.daml.org
7http://reliant.tecknowledge.com/RKF/
8http://www.ic-arda.org/Novel Intelligence/
9http://www.ic-arda.org/InfoExploit/aquaint/



5 Conclusions

Our work is motivated by the evolving demands of distributed web service ap-
plications. We claim that proofs need to be distributed, sharable, portable,
and combinable in order to support explanations for intelligent agents. Since
heterogeneous agents require access to explanations if they are to understand
each other’s answers, we further claim that an approach like Inference Web is
required in order to achieve collaboration and trust between distributed web
agents.

In this paper, we have presented Inference Web proofs. These are used to
provide a uniform solution for distributing sharable proofs. We introduced the
notion of an atomic proof fragment as a way of breaking proofs into manageable
portions and combining proofs. We also introduced atomic proof fragment sets
(APFSs) that exploit a URI-based design in order to provide a distributed and
portable proof. APFSs are the key for constructing combined proofs since they
may contain multiple inference steps potentially generated by heterogeneous
applications deriving the same formula. We also described the IW Registry
inference rule entries and inference engine entries used to provide declarative
rule descriptions used by multiple applications.

Our implemented example is based on the Wines knowledge base that was
designed to contain reasoning and query patterns isomorphic to those found
in the PROSE/QUESTAR family of configurators [11]. This knowledge base
provides a small and understandable domain while being modeled off of indus-
trial help desk configurator applications. We believe Inference Web provides an
extensible solution to explaining web retrieval and deduction.
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